

Enterprise Applications: An Overview

Introduction
 This document is intended to provide an objective view of the current
state of business application development, and describe how Simplified Systems
intends to fulfill these needs. The scope of the class of systems that can be
implemented under the Simplified architecture will be defined, and an item by
item listing of the general functionality of these systems as they are today will be
listed for comparison with the Simplified Systems product offering.

Characteristics of applications
 The Simplified Systems product is designed to primarily support a class of
business systems known as online transaction processing systems (OLTP). Once
only used in very large corporations and governmental institutions, these
database -backed business applications have become prevalent in companies of
modest size in the last several years as the hardware necessary to support such
systems has become cheaper and more readily available.

Most modern implementations of these types of business applications all
share the same basic characteristics. The heart of these applications is almost
always a commercial relational database, which is used to store all of the data
tracked by the application. The database is also used to safeguard the data itself
through the structural integrity requirements and the backup/restore capabilities
of the database. In addition, the database’s transaction control functionality is
usually, but not always, used to prevent situations where errors in either the user
input or the client software cause part of a user request to fail, resulting in data
corruption.

All of these systems include business logic of varying complexity,
implemented either in the database, the client application, or in a specialized
middleware server tier. When examined at its lowest level, this business logic
performs three basic functions, and is triggered whenever a user attempts to
commit data to the underlying database system. The most obvious purpose of
the business logic is data validation, which is the process of examining the values
that the user is attempting to commit, determining whether or not the data is
valid and either halting or continuing the user request. As an extension to the
process of data validation, user input is often examined, and business rules are
used to determine other values of the data that the user is attempting to commit,
and ‘filling it in’ for the user in the process. The more complex scenario found in
business logic, triggering other actions, is simply the process of examining the

data that the user is committing, and then using it to manipulate data stored
elsewhere in the system, which represents a different task in the context of the
business that the application is servicing. While interfacing with other
applications is often cited as another function of business logic, it is usually
implemented as simply ‘flagging’ data for transfer to take place later (becoming
data manipulation, rather than true real-time system integration) in lieu of
actually talking to another application.
 The user interfaces for the applications are often patterned closely after
the underlying data structure, generally representing one or two of the database
tables, with elements of other related tables pulled in for information purposes.
These interfaces are presented as both desktop and web-based applications. The
end-user generally has the capability to search and view the existing data, and to
create, edit, or delete data through these forms. Additionally, the user interface
generally provides the capability to jump to related forms (forms representing
related tables) for a given record. The user interfaces themselves are usually not
very sophisticated or robust, particularly when compared to consumer products,
and do require training and adaptation on the part of the end-user to become
proficient in their use.
 The final characteristic of these types of systems is their monolithic
architecture (one application, one application server, one database), and the
mechanisms by which the application communicates with other applications
within the business. The approaches selected for performing these integrations
have taken on a wide range of forms in practice. At its crudest level, the
integration is performed by one application reading from and writing to another
application’s underlying database. Automated importing and exporting of batch-
file data has been one of the most popular approaches over the years, often
using simple flat-file formats such as comma and tab delimited, or more
sophisticated formats such as EDI and XML. Live transfer of information between
applications using formats such as EDI has been in use for several years, while the
equivalent using XML is rapidly gaining momentum. In a few high-end systems,
real-time system integration has been done using RPC technologies such as RMI
and CORBA, any number of messaging middleware solutions, or specialized
integration middleware applications such as Vitria.
 The driving motivation behind the development of these systems is to
serve the business’s needs. To achieve this end, it is imperative that the
application be implemented to fulfill the business requirements as quickly and
cheaply as possible. The most successful business applications do not deliver
optimum performance, do not have the most sophisticated user interfaces, and
do not implement business logic or integrate with other applications in the most
technologically sophisticated ways. These tradeoffs are made because the time
and resources needed to build a true state -of-the-art business system cannot be
justified by the gains that they will provide to the business.

Historical progression
 Starting with the appearance of commercial relational database systems
and the client-server architecture, there has been a steady progression of tools
and technologies to facilitate the development of business applications. The

relational database was one of the first steps to simplifying the development of
business applications by removing the necessity for the developer to deal with
low-level issues of storing and retrieving data.
 Soon after the advent of the database itself, a series of code-generating
development tools appeared. This step in rapid application development
reduced the amount of repetitive programming tasks that the developer needed
to do, particularly for building user interfaces, enabling them to concentrate
development efforts on more sophisticated elements of the application, such as
business logic.
 However, one of the biggest shortcomings of the client-server model was
the problem of what to do with the business logic. Putting all of the business
logic in the client was simple due to the ease of implementing business logic via
general purpose programming languages in the client and the availability of the
client’s processing power to execute the business logic. However, the ‘fat-client’
approach did suffer from several drawbacks; the slightest change in the business
logic required a redeployment of the client side program to every client that
accessed the application, and implementing the business logic did nothing when
another client or application needed access to the system. Placing the business
logic in the database was a logical alternative to these issues; however, database -
scripting languages were less than ideal for development or debugging, and the
additional load placed on the database server by processing the business logic
could severely impede performance.
 The N-tier approach provided a viable solution to this problem, and
CORBA and messaging-based middleware products simplified the development
of these systems by eliminating the need for the programmer to deal with the
internals of working with the networking APIs of the various operating systems
involved in the deployment architecture. With the presence of a middleware
system between the database and the client, more services and efficiencies such
as pooling, caching, load-balancing, and client management began to appear in
business applications as well.
 Some of the services arising out of the N-tier application led to another
advance in the architecture of business applications, the application server. The
application server provided a mechanism for dealing with middleware-specific
issues such as database access, client management, and transactional control,
freeing the programmer to focus primarily on the data and business logic of the
application itself.
 All of these advances have made an enormous difference in the state of
business application development today, compared to even a few years ago. By
combining modern code generators with modern application servers, a relatively
small team of developers can build and deploy a sophisticated business
application in a short period of time. However, all of these developments have
focused on simplifying and narrowing the tasks of the programmers.
 Meanwhile, the user community has begun application development on
its own. Almost every desktop in almost every business has a copy of Microsoft
Access, and it has seen increasing use for business applications in companies
everywhere. Individuals working in business specialties of the company, outside
of IT, have developed small database applications in Access, based upon their

understanding of the business that they deal with every day, which have been
used by entire departments for some aspect of their work. These ‘rogue’ Access
applications often demonstrate the need for custom application to address some
area of the business, and are often used as models for the ensuing systems.
 Advances in three areas of application development are making it
increasingly easier to create and deploy custom software solutions. First, recent
advances with application servers and their associated tools have resulted in
more and more technical overhead functionality being embedded in third-party
platforms. Secondly, code generators such as Computer Associates’ Cool:Gen are
providing gains in development efficiency by automating redundant
development tasks. Finally, the popularity of applications such as Microsoft’s
Visual Basic has shown that database-savvy users can quickly design and
implement simple database applications to address their business needs if given a
graphical design tool they can understand.

Implementation of application functionality
 The final part of this document will examine the functionality required to
implement business applications and how Simplified Systems has addressed these
areas in its product offering.

Database Functionality
• Data Object Creation.

Users create the data structure through the object designer. The user
must know to differentiate between a top-level table (no foreign key
references), child table (one or more foreign key references, representing a
1-N relationship), and a join table (creating a link between two or more
tables, representing an N-N relationship). The basic guidelines for
deciding what table type to choose can be addressed in documentation
and training. In the case of "child" and "join" table types, the user must
specify the ‘parent’ object(s) for the table. Keys and referential integrity
will be done automatically for the user, and cannot be modified by the
user, preserving normalization. Columns are added by choosing a high-
level type (such a ‘String’ or ‘Decimal’), and mapped to a database-specific
type by the system.

• Business Object Creation
Users can use the object designer to combine one or more tables into
business objects, or views, of the underlying database. After choosing the
initial table to view, the user is presented with a list of related tables that
can be added as to the view. Any table that is related to any other table
that is part of the database can be added to the business object. The user
can also specify whether or not a table is read-only or editable within the
business object; that is, whether or not that table can be modified, or is
merely there to present information. Any of the columns of any of the
tables can be removed from the business object, allowing the designer to
hide data in specific objects.

• Transactional Support
By default, every object (and all of its associated business logic) uses a ‘flat
transaction ’. There are programmatic mechanisms for bundling multiple
operations into a single transaction, or launching a separate transaction
outside of the current transaction. The Simplified product is not suitable
for any system that requires the capability to perform nested transactions
and nested transaction recovery; however, flat transactions are more than
adequate for most business applications.

• Locking
By default, every object uses an optimistic lock implemented by the use of
a row version. Like flat transactions, this is sufficient for most business
applications. A read-lock mechanism may be added in a future version.

• Pooling
The translator server provides database pooling. A transaction is granted
exclusive use of a connection for the duration of the transaction; data
retrieval is always routed to an available connection. Additional
connections are opened as required, and will be closed when use drops
below a configurable threshold. In a deployment with multiple translators,
connections will be pooled across multiple translators based on
configuration usage thresholds.

Business Logic Functionality
• Object Rules

Business logic runs on the middleware server based on user actions. All
objects can run business logic after retrieving data (intended primarily to
massage data for export to other systems), before inserting, updating, or
deleting a record (to perform validation and manipulation of the data
about to be saved), and after inserting, updating, and deleting (to create
or modify data elsewhere in the application).

• Rule Designer
The Rule Designer is a point-and-click user interface for designing business
rules. The designer chooses the object that they are defining logic for, and
can begin to define one or more rules for the object. The rules are
presented to the user in a plain-English format; by clicking on underscored
portions of the rule text, the user is presented with a list of valid options to
choose from. The rules can contain basic arithmetic, simple or complex
conditional statements, loops over a collection, or invocations on an
object. The rule always contains the object that it is executing against,
with full access to all of the data within the object. Additionally, the rule
can access any other objects in the application for select, insert, update,
and delete, enabling the rule to check or modify data elsewhere in the
system. Finally, built-in functions are currently provided for manipulating
strings and dates, performing more advanced mathematical functions, and
gathering basic statistical information.

• Rule Engine
The Rule Designer generates a propriety format for storing business rules,

which is executed by the Rule Engine on the server-side.
• Object Descriptors

The Rule Designer uses a mechanism of Object Descriptors to present
invocations on objects to the user in an intelligible manner. Analogous to
BeanInfos, Object Descriptors will be an open API, allowing programmers
to expose code libraries for use in the rule designer.

• Custom Object Rules
If the need arises, custom Java classes can be written and attached to
objects as rules. This would most likely be used for logic that is too
complex for the Rule Designer, or to interface with other applications.

• Custom Objects
As a last resort, a custom implementation can be written in Java for a
specific type of object. This should only be needed for the business
processes that are so complex that they cannot be implemented (or
implemented efficiently) through the Rule Designer or the Custom Rule
architecture.

User Interface Functionality
• Desktop Client Application

One of the options for client applications is a Java-based desktop
application. This application can be built entirely using the Application
Builder user interface, and deliver an equivalent or better user experience
than most custom-built user interfaces. Simplified includes a rich Swing-
based component library that has been built to interact with the business
objects, and provide all of the functionality that is found in the better
custom business application user interfaces. If a more complex user
interface is needed than the Application Builder can provide, custom Java
code can be used for components of the application as needed.

• Browser-based Client Application
Browser-based dynamic HTML clients can be built using the Web Builder
user interface. The Java Servlet runtime architecture allows these
interfaces to be served from the wide variety of server hardware and
software configurations that support this architecture. The browser-based
applications support the full level of functionality found in the desktop
applications. Again, if a more complex user interface is needed, custom
Servlet/JSP code can be used for parts of the application as needed.

• Query/Display
All of the forms allow the end-user to perform custom queries to retrieve
data. The designer has the option of choosing between Query-by-
Example, where the end-user populates specific fields of the form with the
values that they are searching for, or Search Screen, where the end-user is
presented with a specialized form for creating complex queries using a
range of comparison and clause-nesting options. For displaying the
results, the designer may choose between displaying the data in a form, a
table, a form and a table, or a form and table on a single screen.

• Editing

For editing the data, the designer may choose between editing in the
display table, form, both, or by launching a separate form dedicated to
editing. In addition to standard form components, text fields with
attached calculators and calendars are provided for editing numeric and
date fields, while data-driven combo boxes and tabular lookup fields are
available for constrained values.

• Related Data
The user interfaces provide a variety of options that can be used for
accessing related data from any given form. The designer can place
buttons on a form in order to launch another form displaying the relevant
data for the current record. The designer may also place tables on the
form that display the related records, and use these to interact with the
related data itself.

• Common Functionality
The designer may choose to place buttons directly on the form to control
its actions, or create a common toolbar and menu system that are shared
across all forms. The application can determine what form is active, which
tasks can and cannot be performed, and automatically enable or disable
the buttons or menus as necessary.

System Integration Strategies
• Batch File Import/Export

The application does not currently support plain-text batch files
import/export. XML is the preferred mechanism for batch-file transfer.

• Shared Database Schema
While this is not recommended, it is possible for outside applications to
read and write to a Simplified application’s data structure. The Simplified
middleware API also provides a mechanism for executing custom SQL
statements directly against a database.

• EDI
EDI-based transfers are not supported. The current trend in the industry is
to migrate to XML, which is supported.

• XML
The final release of the Simplified product will include a graphical tool for
making XML on business object fields and actions, and a runtime for
performing XML imports/exports in both batch mode and ‘on-the-wire’
using SOAP.

• CORBA/RMI
The various components of the Simplified product communicate using
CORBA, so CORBA access is readily available. The Java client library is
available for use by external systems; a C++ client library is planned for a
later release. The ‘RMI-over-IIOP’ technology shipping in the newer Java
implementations should a llow RMI-based clients access to the systems as
well.

• Custom APIs
The middleware server currently supports a ‘Persistent Objects’ API, which

allows programmers to make gateways to external systems available to
custom business logic. This allows programmers to pool their external
system connections, and keep them available for business logic.
Additionally, through the use of Object Descriptors, these external APIs
can be exposed through the Rule Designer if necessary.

• Message-based Middleware
No explicit support for message-based middleware solutions is available at
this time. Other mechanisms for access other systems can be used to
implement a messaging-based integration.

• Middleware Adapters
No third-party middleware adapters are available or planned at this time.
If there is sufficient demand, this may be undertaken for a future release.

Definitions

1. Transaction
In the context of Simplified’s product, a transaction is a sequence of information
processing (such as updating a database record), treated as a unit, primarily for
the purposes of ensuring database integrity. For a transaction to be completed
and database changes to be made permanent a transaction has to be completed
in its entirety; the operations are all or nothing. If an interruption or cancellation
occurs before a transaction is successfully completed, all changes will be reversed.
“Commiting” a transaction records its changes and makes it permanent.
“Rollback” of a transaction brings things back to the way they were at the start of
a transaction.

2. OLTP - Online Transaction Processing
An effective architecture for enterprise, large scale computing that enables and
manages transaction-oriented applications (usually for data entry and retrieval).
It involves tracking related database changes so that if anything goes wrong with
any one of those changes, all associated entries made to that point could be
reversed. Today's online transaction processing needs increasingly require
support for transactions that span networks (and may include multiple
organizations). Correspondingly, newer OLTP systems use client/server
processing and brokering software that can allow transactions to run on different
computer platforms across more than one network.

3. EDI - Electronic Data Interchange
Involves the exchange of structured data between two or more organizations in

a form that allows automatic processing with no manual intervention. It is
relevant to any business that regularly exchanges information such as client or
company records, and is especially relevant for sending and receiving statements,
payments, orders, and invoices. EDI allows transactions which have required
paper-based systems for processing, storage and postage to be replaced and
handled electronically - faster and with less room for error.

4. XML - Extensible Markup Language
A programming/formatting language similar to HTML. Unlike HTML (which
defines information presentation), XML focuses on the structure of content,
providing a mechanism to describe the organization and structure of data. The
most important benefit of XML is that it defines a single syntax for documents and
messages which can be shared on any platform.

5. RPC - Remote Procedure Call
A client-server based protocol that enables programs to request a service from a
program located in another computer in a network without having to
understand network details. (A procedure call is sometimes known as a
subroutine, or function call.)

6. RMI - Remote Method Invocation
Enables programmers, using the Java programming language, to write object-
oriented programs in which objects on different computers can interact in a
distributed network. RMI is a Java-based version of the remote procedure call
(RPC) protocol, with the added ability to pass one or more objects with the
request.

7. CORBA - Common Object Request Broker Architecture
An architecture and specification for creating, distributing, and managing
software objects over a distributed network. It allows programs at different
locations, developed by different organizations, to communicate via an "interface
broker." Similar to RPC and RMI it abstracts the network layer of communications,
providing a higher level view for the programmer, in this case using an object
oriented approach to programming distributed systems. This enables clients to
request a service without knowing anything about what servers are attached to
the network.

8. ORB - Object Request Broker
A component of the CORBA specification which provides a middle layer between
clients and servers. In the CORBA model, different ORBs receive requests,
forward them to the suitable servers, and finally pass the results back to the client.

9. N-Tier
Meaning “some number of tiers”, an n-tier application program is one that is
distributed among three or more computers over a network. In addition to the
advantage of distributing the data and programs over a network, such
applications have the advantage that any one tier can be run on an appropriate

processor or operating system platform which can be updated independently of
the other tiers. A common implementation of n-tier application is the 3-tier
application, where the user interface resides on the user's computer, the business
logic resides on a more centralized computer, and data storage on another
computer (usually a ‘database server’).

10. Flat Transaction
An “all or nothing” proposition, this type of transaction that has only one layer of
control by the application (as opposed to “chained” or “nested” transactions).
Everything involved in a flat transaction either survives or is discarded: there is no
way of committing or aborting parts of such transactions.

11. Optimistic Lock
Database locking in general involves the database preventing multiple users from
accessing (reading or writing) the same record. This can in many instances cause
detrimental database performance. Optimistic locking is a database record-
locking scheme whereby a page of records is not locked until the user saves
changes to the record. This is in contrast to Pessimistic Locking, where the page
containing a record (and a ll other records in that page) is locked as soon as a
user accesses that record. The advantage of optimistic locking is that when using
this scheme, records are locked for only a very short period of time, minimizing
potential locking “collisions”, also known as lock contention. The disadvantage is
that more than one user can be editing the same record at the same time and
the application must then deal with the situation when several users attempt to
save different versions of a record. It is optimistic in the regard that it sees such a
situation as the non-typical case. No user will be able to overwrite the data of
other users without taking the others’ changes into account.

12. IIOP - Internet Inter-ORB Protocol
A specification created to enable CORBA functionality over the World Wide Web.
Enables the exchange of complex data types, as opposed to simple text
supported by HTTP.

